

Brainless intelligence: the curious case of acellular slime mold *Physarum polycephalum* Subash K. Ray **YRW17**, CSCAMM, UMD 12th October, 2017

Complex decision-making

Requires simultaneous assessment of the options by an array of attributes:

- 1) Risk from the presence of a predator
- 2) Previous predation events
- 3) Food availability
- 4) Distance to the habitat

Complex decision-making

~ 7 billion neurons

Majority of life is brainless!!

Non-neuronal organisms thrive in complex environments

Plant roots

Bacterial cells

Immunoglobulins

Acellular slime mold Physarum polycephalum

Phylum – Amoebozoa Class - Myxogastria

Brainless but multi-headed

Solve labyrinth mazes

Construct Smart Networks

Construct Smart Networks

Construct Smart Networks

Rail road network in Tokyo metropolitan area

Total length (cost), average mean distance (**transport efficiency**) and fault tolerance (**robustness**) similar to real world man-made structures.

Make the best decision given current information

Gather more information

Reid et al. (2016)

Casino slot machine

Casino slot machine

e – evenly distributed food sources
r – randomly distributed food sources
LQ – low-quality arm
HQ – high-quality arm

Slot machine for slime mold

Casino slot machine

Example 8e vs 4e

Slot machine for slime mold

$$P(m_t = R) = \frac{A_R}{A_R + A_L}$$

 m_t – probability of the cell moving right in the next move A_L - No. of rewards sites encountered on the right arm A_R - No. of rewards sites encountered on the left arm

External memory

(A) extending pseudopod
(B) search front
(C) tubule network, and
(D) extracellular slime
deposited where the cell has
previously explored.

External memory

"U-shaped trap" problem

Membrane contractions cause shuttle streaming

Slime mold cell membrane = the "brain" of slime mold?

Stimulus sensed by the membrane

Membrane performs the action

Aim 1: Establish a relationship between membrane oscillations and decision-making

Sampled segments

Aim 1: Establish a relationship between membrane oscillations and decision-making

Model using chains of coupled oscillators

Sampled segments

Aim 1: Establish a relationship between membrane oscillations and decision-making

Coupled Oscillator Model

Kuramoto Model:

$$\frac{d\theta_k}{dt} = \omega_k + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_k)$$

 θ_k = rate of change of phase ω_k = natural frequency of the oscillator K = coupling strength N = number of oscillator influencing frequency

$$\theta_j =$$
 phase of the jth oscillator

Aim 2: Oscillation patterns in response to direct mechanical stimulation

"Poking" cell membrane to induce oscillations

Investigate the **causal link** between **mechanical oscillations** and **decision-making**

1) Oscillatory patterns while making trade-offs (i.e. when making trade-offs)

Contradictory information: High-quality food source – reward Light field – risk (danger)

2) Oscillatory patterns in the presence of extra-cellular slime

Hagen Poisseuille equation:

$$Q_{ij} = \frac{\pi r^4 (p_i - p_j)}{8\eta L_{ij}} = \frac{D_{ij} (p_i - p_j)}{L_{ij}}$$

 p_i, p_j - pressure at node i and j L_{ij}, r_{ij} - length and radius of the tubes

 $D_{ij} = \frac{\pi r^4}{8\eta}$ - measure of conductivity of the tube

Two nodes were chosen at random, with flux terms:

$$\sum_{j} Q_{1j} = I_0$$
$$\sum_{j} Q_{2j} = -I_0$$

As the amount of fluid must conserved, i (i \neq 1,2)

$$\sum_{j} Q_{ij} = 0$$

To accommodate adaptive behavior, conductivity evolves by:

$$\frac{dD_{ij}}{dt} = f(|Q_{ij}|) - D_{ij}$$

Expansion of tube in response to flux

Rate of tube constriction

Where,

$$f(|Q|) = \frac{|Q|^{\gamma}}{1+|Q|^{\gamma}}$$

 $I_0 = 0.20$ and $\gamma = 1.15$

Experiment

Many Thanks to:

The Swarm Lab – New Jersey Institute of Technology-Rutgers University, Newark Simon Garnier (PI) Chris Reid (Post-doc) – now Lecturer at Macquarie University, Sydney, Australia Abid Haque (Graduate research assistant) Purva Shah (Undergraduate research assistant) Amisha Naik (Undergraduate research assistant)

Collaborators:

Gabriele Valentini (Post-doc) – at Beyond Center, Arizona State University, AZ

Thank you!

Questions and suggestions!!

